geprü ## **Installation Instructions and Technical Data** #### Beam section TP F 80 (11x30) and connect square End Support Only one Self-forming Screw FLS 80 pass-through the elongated holes (11x30) and connect into the Framo elements within the box section, e.g. square End Support to WBD F 80, octagonal End Support to STA F 80. Self-forming Screws FLS 80 screws directly into the 9.1mm holes (perforations) running along the outer edges of each face of the Framo profile. All connecting Framo parts are fixed in this way, e.g. Cantilever Brackets AK F 80, End Support STA F 80, Channel Adaptor SA F 80 and Slide Sets GS F 80. Self-forming Screw FLS F 80 Thread-forming bolt with locking-serration for all connections. Attention! Torque 60 Nm! Assembly of Beam Section TP F 80 with WBD-End Support F 80 and End Support STA F 80: For best performance the Self-forming Screw FLS 80 must be applied to both sides in greatest possible distance apart 2 x 2 Screws opposite one another. Distance between end of section and endplate \leq 10 mm. Assembly to Beam Section TP F 80, for instance Cantilever Bracket AK F 80 and others. Oset hole-lines allow for connection at one level without collision of bolts inside the box section for all components with endplate (e.g. STA F 80, SA F 80). 4 Self-forming Screws are required to fix each end-plate. # **Technische Daten** | | Moment of | Section | Radius | Torsional | Cross | Weight | |--------------|--------------------|--------------------|-------------|--------------------|--------------------|----------| | | inertia | modulus | of inertia | moment | section | | | | $I_y = I_z$ | $W_y = W_z$ | $i_y = i_z$ | lt | Α | G | | | [in ⁴] | [in ³] | [in] | [in ⁴] | [in ²] | [lbf/ft] | | Beam Section | | | | | | | | TP F 80 | 1.53 | 0.97 | 1.16 | 2.36 | 1.13 | 4.23 | Beam Section TP F 80, Steel, Hot-dipped-galvanised according to EN ISO 1461 tZn o. All structural data takes perforation into account. # Sample Testing and Working Loads according to EN 13480-3 | L _{max} [in] | F _{z, allowed} [lbf] | |-----------------------|-------------------------------| | 40 | 3053 | | 60 | 2035 | | 80 | 1526 | | 100 | 1217 | | 120 | 1018 | | | | Fz as a dead load at L/2 ### **Combined Cantilever Arm** | Combined Cantilever Arm from | |------------------------------| | Beam Section TP F 80 | - 1 x End Support WBD F 80 - 1 x Cantilever Bracket AK F 80 - 8 x Self-forming Screws FLS F 80 | H _{max} [in] | L _{max} [in] | F _{z, allowed} [lbf] for | | |-----------------------|-----------------------|-----------------------------------|-------------------------| | | | $F_x = 0$ | $F_x = \mu_0 \cdot F_z$ | | | 12 | 907 | 863 | | 20 | 20 | 553 | 509 | | | 28 | 398 | 354 | | 40 | 12 | 907 | 863 | | | 20 | 553 | 509 | | | 28 | 398 | 354 | | 60 | 12 | 907 | 863 | | | 20 | 553 | 509 | | | 28 | 398 | 354 | F_z as a dead load at distance L, F_x as a variable load at distance L from pipe expansion/friction Friction Coefficient $\mu_0 = 0.2$ for friction in longitudinal direction | H _{max} [in] | L _{max} [in] | F _{z, allowed} [lbf] for | | |-----------------------|-----------------------|-----------------------------------|-------------------------| | | | $F_x = 0$ | $F_x = \mu_0 \cdot F_z$ | | | 40 | 3583 | 2853 | | 40 | 60 | 2389 | 1902 | | | 80 | 1792 | 1438 | | | 40 | 3517 | 2588 | | 60 | 60 | 2389 | 1902 | | | 80 | 1792 | 1438 | F_z as a dead load L/2, F_x as a variable load at L/2 from pipe expansion/friction Friction Coefficient $\mu_0 = 0.2$ for friction in longitudinal direction Frame from Beam Section TP F 80 2 x End Support WBD F 80 2 x End Support STA F 80 24 x Self-forming Screws FLS F 80 **T-Support** | H _{max} [in] | F _{z, allowed} [lbf] for | | | |-----------------------|-----------------------------------|-------------------------|--| | | $F_x = 0$ | $F_x = \mu_0 \cdot F_z$ | | | 20 | 2212 | 2212 | | | 40 | 2212 | 2212 | | | 60 | 2212 | 1659 | | T-Support from Beam Section TP F 80 1 x End Support WBD F 80 1 x End Support STA F 80 12 x Self-forming Screws F 80 F_z as a dead load, F_x as a variable load from pipe expansion/friction. Friction Coefficient $\,\mu_0=0.2$ for friction in longitudinal direction When load is out of centre, a proof of buckling forces is required. # Working loads in accordance with Eurocode 3 (with Proof criteria) | L _{max} [in] | F _{z, allowed} [lbf] | |-----------------------|-------------------------------| | 40 | 3075 | | 60 | 2035 | | 80 | 1548 | | 100 | 1018 | | 120 | 708 | Fz as a dead load at L/2 max. bending L/200 ## **Combined Cantilever Arm** | H _{max} [in] | L _{max} [in] | F _{z, allowed} [lbf] for | | |-----------------------|-----------------------|-----------------------------------|-------------------------| | | | $F_x = 0$ | $F_x = \mu_0 \cdot F_z$ | | | 12 | 553 | 553 | | 20 | 20 | 332 | 332 | | | 28 | 221 | 221 | | | 12 | 398 | 398 | | 40 | 20 | 243 | 243 | | | 28 | 177 | 177 | | | 12 | 310 | 310 | | 60 | 20 | 199 | 199 | | | 28 | 133 | 133 | #### **Combined Cantilever Arm from** Beam Section TP F 80 - 1 x End Support WBD F 80 - 1 x Cantilever Bracket AK F 80 - 8 x Self-forming Screws FLS F 80 F_z as a dead load at distance L, F_x as a variable load at distance L from pipe expansion/friction Friction Coefficient μ_0 = 0.2 for friction in longitudinal direction max. deviation H/100; L/100 | H _{max} [in] | L _{max} [in] | F _{z, allowed} [lbf] for | | |-----------------------|-----------------------|-----------------------------------|-------------------------| | | | $F_x = 0$ | $F_x = \mu_0 \cdot F_z$ | | | 40 | 4424 | 3805 | | 40 | 60 | 3207 | 2566 | | | 80 | 2433 | 1924 | | | 40 | 4424 | 2035 | | 60 | 60 | 3207 | 1969 | | | 80 | 2433 | 1902 | $\rm F_z$ as a dead load L/2, $\rm F_x$ as a variable load at L/2 from pipe expansion/friction Friction Coefficient μ_0 = 0.2 for friction in longitudinal direction max. deviation H/100; max. bending L/200 Frame from Beam Section TP F 80 2 x End Support WBD F 80 | = x = o o o p p o | |-----------------------------------| | 2 x End Support STA F 80 | | 24 x Self-forming Screws FLS F 80 | | | | | Fz
Fx | |---|----------| | 1 | | | | | | | 9 P | | エ | | | | | | | | | | 4 4 | | | 1 6 | | | _=== | | | T | | H _{max} [in] | F _{z, allowed} [lbf] for | | |-----------------------|-----------------------------------|-------------------------| | | $F_x = 0$ | $F_x = \mu_0 \cdot F_z$ | | 20 | 2212 | 2212 | | 40 | 2212 | 885 | | 60 | 2212 | 509 | F_z as a dead load, F_x as a variable load from pipe expansion/friction. Friction Coefficient μ_0 = 0.2 for friction in longitudinal direction max. deviation H/100 When load is out of centre, a proof of buckling forces is required. gep_{rü,} ## **Technicla Information** ## **Application** This 'Installation Guidelines' is supposed to provide recommendations for supporting frames within industrial pipework and plant engineering, both according to EN 13480-3 and for the design and dimensioning of secondary steel constructions . All data are based on the results of the MPA-Report No. 52140-901 2896. (Material Pruefanstalt / Germany) ## **Working loads** In addition to the weight we have considered the friction force Fx in anticipation of an appropriate frame-design. The friction cofficient of 0.2 is valid for all SIKLA Slide Sets on the hot-dipped-galvanised surface of Framo 80 beam sections. ## **Recyclebility of Products** Products must only be re-used if the recommended working loads have not been previously exceeded and if the coating has not been discernibly damaged. ## **Generaly Remarks** Load data applies to predominantly static, not dynamic, stress at room temperature. The resulting permissible working loads and values are to be understood as the practical load capacity. A proof for anchors and fixings used for connection to the primary building structure must be carried out separately. This document is solely for being used by the receiver but remains property of SIKLA. The technical drawings and all other content are to the best of our knowledge. Pictures and illustrations are non-committing. We cannot be held responsible for printing errors and their implications. We reserve the right of making alterations and improvements with progress of the art in mind. Please do not hesitate to contact us directly if you have queries or suggestions. ## Contacts Sikla USA Inc. 2220 Nortmont Parkway Suite 250 Duluth, GA 30096 Phone 770 295 00 38 Fax 678 417 6273 e-mail: info@sikla.com Internet www.sikla.us